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In this paper we give the direct and inverse theorems for beta operators. Some
other approximation properties of these operators are also given. © 1991 Academic

Press, Inc.

1. INTRODUCTION

Beta transform was introduced for studying conditions for the regularity
of sequence-to-sequence transformations. Beta operators are given by

fU/'x)= f" bn (x,u)f(1/u)du

where f E LP[O, ex)) (1 ~ p ~ CXJ), and

(x> 0), (1.1 )

x n un - 1

bn(x, u) = B(n, n) (1 + xufn'

B(n, n) = «n - 1)! )2/(2n - 1)1.

(1.2)

(1.3)

Some papers [19,20] have considered the approximation properties of
beta operators. In this paper we give the direct and inverse theorem for
these operators in LP [0, CXJ) (1 ~ p ~ ex) ).

For consideration of the connection between the rate of approximation
and the smoothness of the functions we use the modulus of smoothness
given by Z. Ditzian and V. Totik [9], which in our result is given by

OJ~(/, t)p= sup 11.d~<pfIILP[o.oo),
O<h~r
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where f E LP[O, 00), cp(x) = x, and

LlU(x) = f(x + h) - 2f(x) + f(x - h)

LlU(x) = 0, otherwise.

for x E [h, (0);

This modified modulus of smoothness has the known properties of
moduli of smoothness which were found by V. Totik [15]. It is a valuable
tool for dealing with the rate of approximation, inverse theorems, and
imbedding theorems.

We use the technique of interpolation spaces and characterization of
K-functional which has been used for inverse theorems by a number of
mathematicians [4, 5, 8, 9, 14].

Now let us give some notations.
For 1~ p ~ 00, let

D = {g: g E LP[O, (0), g' absolutely continuous locally, cp2g" E LP[O, oo)}

(1.5)

be the weighted Sobolev space, and define

S(g) = cp2g";

IIS(g)llp= Ilcp2g"llu[o.oo)'

For f E LP[O, (0), let

Kq>,2(f, t)p = inf {Ilf - gllp + t IIS(g)llp}
gED

(t> 0)

(1.6)

(1.7)

be the so-called K-functional.
Z. Ditzian and V. Totik proved (see [9, Chaps. 1-3]) the interpolation

theorem, that is, the equivalence of this K-functional to the above modulus
of smoothness.

Now we can give our direct and inverse theorem for beta operators as
follows.

THEOREM 1. For f E LP[O, (0), 1 ~ p ~ 00, 0< 0( < 1, the following
statements are equivalent:

(1) IIPn(f)-fllp=O(n-~);

(2) Kq>,2(f, t)p = O(t~);

(3) IILllq>fllu[o,oo)= O(h2~);

(5) w~(f, t)p = O(t2~).

For p = 00 we restrict our discussion to continuous functions.

(1.8 )

(1.9)

(1.10)

(1.11)
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Remark 1. It is easy to prove by the methods in [10, 12, 13] that our
theorem is still valid for IX = 1.

Remark 2. The L 00 case of our theorem can be derived from a result of
V. Totik [16] by a minor change.

The results in Section 2 show that beta operators have some interesting
properties.

2. LEMMAS

First we give some formulae and estimates. For 1 < p < 00, define
q := p/(p - 1).

LEMMA 2.1. Beta operators have the following properties:

f1n(ln t, x) = In x;

f1n(tm, x) = B(n +m, n-m) xm/B(n, n),

(2.1 )

(2.2)

for mE Z, m<n, where B(n+m, n-m)= (n+m-1)!(n-m-1)!j(2n-1)!.
In particular, we have for n > 2

f1n(t, x) = nx/(n - 1);

f1n(t2, x) =n(n + 1) x 2/((n -1)(n - 2));

f1n(1/t, x) = n/((n - 1)x).

Proof For m < n, we have

00 1 tn - 1 - m

f1n(tm,x)= t B(n,n)(1+tfndtxm

= B(n + m, n -m) xm/B(n, n).

In the same way we have

f1n(ln t, x) -In x = f1n(ln(t/x), x)

00 1 t n - 1

= -f -- Intdt
o B(n,n) (1 + tfn

=0.

LEMMA 2.2. For 1 ~ p ~ 00, fED, we have

(2.3 )

(2.4 )

(2.5)

(2.6)
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Proof First let us prove that limx --+ 00 f'(x) = 0 for 1 ED.
For p = 1, x, y> 0, we have

For p = 00, we have

If'(x)- f'(y)1 ~ IlcpY"lloojmin{x, y}.

For 1 < p < 00, we have

If'(x) - f'(y)1 ~ (II: luY"(uW dul) l/

p(lr u- 2q dul) l/q

Thus we know that limx,y--+ 00 If'(x) - f'(y)1 = 0 and limx --+ 00 f'(x)
exists, but the condition 1 E U[O, (0) implies limx --+ 00 f'(x) = O.

Now the proof of our lemma can be derived easily from the Hardy
inequality for 1~ p < 00, g;?; 0, and f3 > 0 given by

The case p = 00 is simpler and our proof is complete.

LEMMA 2.3. For 1 ~ p ~ 00, n;?; 2, we have

Proof For 1 < p < 00,1 E LP[O, (0), we have

IIf3n(f)ll: ~ tOO tOO bn(x, t) 11(ljt)1 Pdt dx

= foo 11(ljtW dt foo bn(x, t) dx
o 0

= n 11/11 :j(n - 1).

The proofs in the cases p = 1 and 00 are trivial.

The following property of beta operators is very interesting.

(2.8)
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LEMMA 2.4. Suppose r E N, f(r-l) is absolutely continuous locally, and
cpl(r) E LP[O, (jJ). We have

Proof Note that

f3n(f,x)= Loo

B(n,:;(~l+V)2nf(X/V)dV.

(2.9)

(2.10)

We can differentiate below the integration sign on [c, + (0) for any c > 0
since the integration formula

f
co vn-3 X

x- r- l -(x/v)l(r)(x/v)dv
o B(n,n)(1+v)2n v2

is uniformly convergent on [c, + (0), hence our proof is trivial.

With all the above preparations we can now prove our theorem.

3. PROOF OF THE INVERSE THEOREM

From the following lemmas we know that (1) and (2) are equivalent by
a result of A. Grundmann [10]. The equivalence of (2) and (3) has been
proved in [14] and our proof of Theorem 1 is complete.

LEMMA 3.1. For 1< p < 00, fED, we have the estimate

(3.1 )

where Ap is a constant depending only on p.

Proof Note that

f(t)-f(x)=r(1/u-1/t)(u2j'(u))'du+(1/x-1/t) x2f'(x). (3.2)
x

We have

lf3n(f, x) - f(x)1 < Ix2f'(x) f3n(1/x -l/t, x)1

+ f3n (It (l/u - 1/t)(u2f'(u))' du I, x)

< Ixf'(x)I/(n - 1)

+f3n(11/X-1/tl\fl(u2f'(U))'ldul,x). (3.3)
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Thus for p = 00, we can estimate easily as follows,

IIPn(f)- flloo ~ Ilcpf'lloo/(n-1)

(
t2-2tx+x

2
)

+(llcp2f"1100+21Icpf'1100)Pn tx ,x

~ II cpf' II oo/(n - 1) + 2( II cp2f" II 00 + 211cpf'II oo)/(n -1)

~ 14 II cp2f" II 00 In.

For 1 < p < 00, we use the maximal function M((cpY')')(x) and obtain

IIPn(f)-fllp~ Ilcpf'll pl(n-1)

+ II M((cp2f')')(X) Pn C
2

- 2:: + x
2
, x)t

~ Ilcpf'llpl(n -1) + 21IM((cp2f'),)llpl(n -1)

~ IlcpY"llpl(n -1) + 2A~ IlcpY"llpl(n -1) ~ A pIIS(f)llpln.

The proof for the case p = 1 is somewhat different.
By Taylor's formula

f(t) - f(x) = (t - x) f'(x) +r(t - u) f"(u) du := 1+ J, (3.4)
x

we can estimate by Fubibi's theorem as follows,

IIPn(I, x)11 Ll[O,oo) = Ilxf'(x)II d(n - 1) ~ 2IIS(f)11 lin; (3.5)

IIPn(J, x)11 Ll[O, (0) = Loo
ILoo

bn(x, t) (It (lit - u) f"(u) du dt Idx

~Loo U:IX bn(x, t) (It (lit - u) 1f"(u)1 du dt

+ foo bn(x, t)r (u -lit) 1f"(u)1 du dt) dx
1/x lit

= fOO dxfOO 1f"(u)1 duf1/U bn(x, t)(llt-u)dt
o x 0

+ foo dx r1f"(u)1 du foo bn(x, t)(u - lit) dt
o 0 1/u
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foo (fU f1
/
U

= 1f"(u)1 du bn(x, t)(ljt - u) dt dx
o 0 0

+ foo foo bn(x, t)(U - ljt) dt dX)
U l/u

= foo 1f"(u)1 du (f Joo bn(x, t)(ljt - u) dt dx
o 0 0

+ foo foo bn(x, t)(u - Ijt) dt dX)
o l/u

=Loo
1f"(u)1 du U: (nxj(n -1) - u) dx

+ foo (U-l jt)nt- 2j(n-l)dt)
l/u

= Loo
u2 1f"(u)1 duj(n-l)~21IS(f)liljn.

Thus our proof of Lemma 3.1 has been obtained.

LEMMA 3.2. For 1~ p ~ 00, fED, n ~ 2, we have

Proof By Lemma 2.4, we have for cp'i" E LP[O, 00)

The following result is the so-called Bernstein-type inequality.

LEMMA 3.3. For 1~ p ~ 00, f E LP[O, 00), n ~ 2, we have

Proof By simple calculations we have

(f3nf)'(x) = Joo f(lju) (nun~lxn-l(l+ xu)-2n
o B(n, n)

-2nunx n(1 +xu)~2n-l) du,

285
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(3.7)

(3.8)
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fOO f(l/u)
= -- nun- 1x n((n + l)(xu -If - 2)(1 + xu)-2n-2 duo

o B(n, n)

(3.9)

Thus for 1 < p < 00, we obtain

f
OO(f001f(I/U)1 -1 ( n+l& nUn Xn

'" 0 0 B(n, n) (1 +xu)2n

_ 4(n+l)UX-2)dU)P dx
(1 + xu)2n+2

f
OO (fOO ( B(n + 1, n + 1)

~ 0 0 n(n+l)bn(x,u)- B(n,n) nbn+1(x,u)

X (4n + 4 - 2/(UX))) dur/q

X tOO If(l/uW (n(n + 1) bn(x, u) - n2bn+1(X, u)

X ( 4n + 4 - :x)I(4n + 2) du) dx

~(3n)p/q tOO If(l/u)IP(n(n+l)Pn(l/t,u)/u

- (4n + 4) n2Pn+ 1(I/t, u)/(u(4n + 2)) + 2n2Pn+ 1(1, u)/(u2(4n + 2))) du

~ (3n)P tOO If(l/uW/u2du;

hence the Bernstein-type inequality

holds.
The cases p = 1 and 00 are trivial and the proof is complete.
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