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In this paper we give the direct and inverse theorems for beta operators. Some
other approximation properties of these operators are also given.  © 1991 Academic

Press, Inc.

1. INTRODUCTION

Beta transform was introduced for studying conditions for the regularity
of sequence-to-sequence transformations. Beta operators are given by

Bl =" bxu) Sy du (x>0), (1.1)
where /e L7[0, o0) (1< p<0), and
xn un-—l
bl u) = B(n, n) (1 + xu)*’ (1.2}
B(n, n)=({n— DHNY/(2n~ 1. (1.3}

Some papers [19, 20] have considered the approximation properties of
beta operators. In this paper we give the direct and inverse theorem for
these operators in L?[0, ) (1< p< w0).

For consideration of the connection between the rate of approximation
and the smoothness of the functions we use the modulus of smoothness
given by Z. Ditzian and V. Totik [9], which in our result is given by

@l(fi )= sup 45, /1 10,05 (1.4)

O<h<1
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where fe L?[0, o), ¢(x)=x, and

A f(x)=flx+h)=2f(x)+ f(x—h)  for xe[h, o0);
47 f(x)=0, otherwise.

This modified modulus of smoothness has the known properties of
moduli of smoothness which were found by V. Totik [15]. It is a valuable
tool for dealing with the rate of approximation, inverse theorems, and
imbedding theorems.

We use the technique of interpolation spaces and characterization of
K-functional which has been used for inverse theorems by a number of
mathematicians [4, 5, 8,9, 14].

Now let us give some notations.

For 1 < p< oo, let

D={g: geL?[0, 0), g’ absolutely continuous locally, ¢p’g” € L?[0, )}

(1.5)
be the weighted Sobolev space, and define
S(g)=9"¢"; 16)
IS(&)1, = 198" | Lo, co)-
For fe L?[0, o0), let
K, (f, t)p=giglf) {1f—zgl,+1lS(,}  (>0) (1.7)

be the so-called K-functional.

Z. Ditzian and V. Totik proved (see [9, Chaps. 1-37) the interpolation
theorem, that is, the equivalence of this K-functional to the above modulus
of smoothness.

Now we can give our direct and inverse theorem for beta operators as
follows.

THEOREM 1. For feL?[0,0), 1<p<o, O0<a<l, the following
Statements are equivalent:

1) BN =S, =0n""); (1.8)
(2) K,.(f,1),=0("); (1.9)
(3) 1145, f 1 oo, o0y = O(H*); (1.10)
(5) wl(f,1),=0(*) (1.11)

For p= oo we restrict our discussion to continuous functions.
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Remark 1. 1t is easy to prove by the methods in [10, 12, 13] that our
theorem is still valid for o= 1.

Remark 2. The L* case of our theorem can be derived from a result of
V. Totik [16] by a minor change.

The results in Section 2 show that beta operators have some interesting
properties.

2. LEMMAS

First we give some formulae and estimates. For 1< p< oo, define
q:=p/(p—1).
LemMA 2.1.  Beta operators have the following properties:
B.(Int, x)=1In x; (2.1)
B.(t", x)=B(n+m, n—m) x"/B(n, n), (2.2)

for meZ, m<n, where B(n+m,n—m)=(n+m—Dn—-m—1)1/2n—1)!.
In particular, we have for n>2

Ba(t, x)=nx/(n—1); (2.3)
Ba(?, x)=n(n+1) x*/((n — 1)(n—2)); (2.4)
Ba(1/t, x)=n/((n—1)x). (2.5)
Proof. For m<n, we have
w 1ot
A=, By

= B(n+m, n—m) x"/Bin, n).

In the same way we have
ﬁn(ln L x) ~Inx= ﬂn(ln(t/x)a x)

- fw L™ a
Jo B(nn) (1 + 1)

=0.
LEmMMA 2.2. For 1< p< oo, feD, we have

lof "I, <le*f"ll,- (2.6)
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Proof. First let us prove that lim, _, ,, f'(x)=0 for fe D.
For p=1, x, y>0, we have

7= O =[] < o i, 5]

For p= oo, we have
/()= f () <19%" || o /min{x, y}.
For 1 < p< oo, we have
y 1/p y i/q
1f)— £ () <<]j |0f ")) P dha ) ( [" w2 >

<l%"l,(2g— 1)~ Y(min{x, y})* 2%

Thus we know that lim, , . |f'(x)—f(»)|=0 and lim,_,, f’(x)
exists, but the condition f e L¥[0, co) implies lim, _, , f'(x)=0.

Now the proof of our lemma can be derived easily from the Hardy
inequality for 1< p< o0, g0, and f >0 given by

(f:o (Lw &(») dy>p xP=1 dx>1/p<p (f:o <yg(y))P y! dy)l/p/b’. (2.7)

The case p= oo is simpler and our proof is complete.

LeMMa 2.3. For 1< p< oo, n=2, we have

1Ball, <m/(n—1). (2.8)

Proof. For 1< p<oo, feL?[0, ob), we have
1BNI2<] " [ balw 1) 1710017 dt
0 -0

=["1rar | b, dx
0 0
=nlf12fn—1),

The proofs in the cases p=1 and oo are trivial.

The following property of beta operators is very interesting.
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LEMMA 24. Suppose re N, fU =V is absolutely continuous locally, and
@'fVe L*[0, ). We have

e B )=Bul@'f ). (29)
Proof. Note that

B, S o

n—1

f(x/v)dv. (2.10)

We can differentiate below the integration sign on [¢, + ) for any ¢ >0
since the integration formula

n—3 x

L, B OO e

is uniformly convergent on [¢, + o0), hence our proof is trivial.

With all the above preparations we can now prove our theorem.

3. PROOF OF THE INVERSE THEOREM
From the following lemmas we know that (1) and (2) are equivalent by
a result of A. Grundmann [107]. The equivalence of (2) and (3) has been

proved in [14] and our proof of Theorem 1 is complete.

LemmA 3.1. For 1< p< oo, feD, we have the estimate

1B.(f)=fll, <A, IS, /n, (3.1)
where A, is a constant depending only on p.

Proof.  Note that
ft) = flx)= JI (Lu—1/0)(wf () du+ (1/x—1/t) X°f"(x).  (3.2)

We have
1B.(fy x)— F(x)] < |x%(x) B.(1/x = 1/t, x)|

(| =ty )y d
< By )~ 1)
(1= 1/ [ 0o 1

)

,x). (3.3)
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Thus for p = o0, we can estimate easily as follows,

1B =l < 0F o/ —1)
10 w2 0 1) ﬁ,,(

<lof'llw/(n—1)+2(190% "Il + 2l 0f "Il )/ (n — 1)
<1419 "Il o /.

12— 2tx + x?
T~ x
ix

For 1 < p < oo, we use the maximal function M((¢?f’)')(x) and obtain

1B.()—fl,<lof ll,/(n—1)

2 2 2
; H M(@))(x) B (ﬂ x)

ix

<llef ',/ (n—1)+ 2| M((9*f ")) ,/(n — 1)
<@ ,/(n— 1)+ 24, 10", /(n—1) < A4, | S(f)]] o/n.

The proof for the case p=1 is somewhat different.
By Taylor’s formula

FO =) =(=x) )+ [ (—w) [ duz=T+],  (34)

we can estimate by Fubibi’s theorem as follows,

1BuL, %) 0,00 = 197G /(n — 1) < 2SN 1 f (3.5)

[ee} =<} 1/¢
18,0, %)l g0, = [ UO b, 1) [ (1t —u) £"(u) du | dx

<[t [ = 17
+ LZ b(x, 1) J; (u—1/1) | f"()] du dt> dx

=] 6] 1/u
=j dxj ()] duf bo(x, )1/t — ) dt
[4] x 0

+ f:o dx f: \f7 ()| du f: bo(x, 1)(u— 1/t) dt
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o0 u plju
= [ 17wl du (j [ b (11— u) dr dx
0 0 Y0

+” j:’ b (x, )(u—1/1) dr dx)

=j°° |f7 ()] du <j F b,(x, )(1/1 — u) dt dx
" b (x, =1ty dr d
+ fo fw (6 O u— 1) dt x)
= L‘” Lf"(u)| du (fo (nx/(n—1) —u) dx
+f°° (u— 1/t nt=/(n—1) dt>
1/u
=f u? | f" ()] du/(n—1) < 2SS /n.
Thus our proof of Lemma 3.1 has been obtained.

LEMMA 32. For 1< p< oo, feD, n=2, we have

ISB. M, <2 1SN (3.6
Proof. By Lemma 2.4, we have for ¢*f” € L*[0, oc)
lo*(B. )N, < 1B.@*f M, <nll@* "] ,/(n—1)<2IS()],.

The following result is the so-called Bernstein-type inequality.

LemMa 3.3, For 1< p<oo, feL?[0, ), n=2, we have

IS(B, ), <3n|f1,. (3.7)
Proof. By simple calculations we have
@ f(1
(Buf Y= [ Bl = )

— 2nu"x"(1 + xu) "2~ du, (3.8)
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© f(1
.y =] 2

_ 4n2unxn+ 1/(1 + xu)2n+ 1

(nn—1D) u" x"(1 + xu)~ 2

+2n2n+ 1) " T ix" P21 4+ xu) ") du

[~ L
o B(n,n)

nu" " x"((n+ D) (xu— 1) —2)(1+ xu) "2 du.

(3.9)

Thus for 1 < p < oo, we obtain
J, 1x*Bas )17 d

<L B (e

4n+1)ux—2 7
) %)

<[ (J7 (s 08y =2

x (4n+ 4 — 2/(ux))> du)p/q

[ (nt 1) b5, 0= 8,50

x<4n+4—%>/(4n+2) du> dx
<G [ 1AL+ 1) B 11, )

— (n-+4) 1B, (Ut )/ (u(dn +2)) + 2%, (1, w)/(u*(dn +2))) di
<Gm [ 1 (1)) o

hence the Bernstein-type inequality

I1S(B. NI, <3nllf1,

holds.
The cases p=1 and oo are trivial and the proof is complete.
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